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SUMMARY 
Sir Charles Darwin has advocated a study of the ‘ drift’ of 

material surfaces in the classically investigated irrotational flows 
past bodies. This suggestion is followed up and given further 
support in the present paper. I n  particular, it is shown how 
secondary flows can be evaluated by use of the ‘ drift function ’ t 
for the primary flow. This is a function ( 5  1) such that material 
surfaces initially at right angles to the stream drift into shapes 
expressible by equations t = constant. 

The analysis leads to a simple expression (S 4) for the secondary 
velocity field in the flow past an infinite cylinder of any cross- 
section, with the upstream velocity normal to its axis and increasing 
linearly with distance along the axis-a problem in which only the 
secondary vorticity field was previously known. The drift past a 
sphere is computed and illustrated ($ 6), and the secondary vorti- 
city field in shear flow past a sphere is tabulated ($7). There is 
also a.detailed study ($ 3) of the asymptotic form of the secondary 
velocity field in flow past any body, based on a result of Darwin 
concerning ‘ hydrodynamic mass ’ . 

1. INTRODUCTION 
Sir Charles Darwin (1953) has shown what interesting and important 

conclusions can be drawn by studying the deformation, or ‘ drift ’ as he 
calls it, of material surfaces-and, generally, by studying the motions of 
individual particles-in the classical problems of irrotational flow of fluid 
about bodies. Some more advantages of this approach are indicated in the 
present paper. In particular, the Cauchy-Helmholtz-Kelvin result that 
vortex lines move with the fluid, while the magnitude of the vorticity 
changes in’proportion to the local stretching of the vortex lines, is combined 
with it to deduce how the vorticity in a weakly-sheared flow is altered in the 
presence of an obstacle, as a result of deformation of vortex lines by the 
irrotational component of the flow about the obstacle. 

Detailed results are obtained for the sphere, which Darwin (1953) 
treated only briefly. The deduced vorticity field in shear flow past a 
sphere (0 7) will be used in a later paper, together with the recent derivation 
(Lighthill 1956) of the image system of a vortex element in a sphere, to 
compute certain features of the secondary flow, and in particular the up- 
stream displacement of the stagnation streamline-a quantity related to the 
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displacement of the effective centre’ of pitot tubes in shear flow, des- 
cribed by Young & Maas (1936). 

The approach leads also (8 4) to a convenient expression for the secondary 
velocity field in the flow past an infinite cylinder of any cross-section with 
the upstream velocity normal to its axis and increasing linearly with distance 
along the axis ; in this problem, only the secondary vorticity was previously 
known (Hawthorne 1954). 

Hydrodynamics has achieved impressive results by the simplification of 
concentrating on the steady (or nearly steady) field of flow velocities relative 
to a moving body, as specified in the Eulerian manner. This does not 
mean, however, that additional information, regarding the history of 
individual particles of fluid, is of no value. For example, Darwin (1953) 
shows that, when a circular cylinder moves through otherwise undisturbed 
fluid, a typical fluid particle begins to move forwards before the body reaches 
it, then starts to move outwards (away from the path of the body) and 
forwards, then outwards and backwards, and is moving backwards (parallel 
to the path of the body but in the opposite sense) when the body is abreast of 
it; it then moves inwards and backwards, inwards and forwards, and finally 
comes to rest while moving forwards, at a point slightly ahead of its original 
position. This result throws light on the familiar gyrations of the air, and 
of small particles suspended in it, when any large body moves past. 

Darwin considers also “ an infinite thin plane of fluid, at right angles to 
the motion, marked so as to be made recognizable, perhaps by means of 
some dye-stuff ”, and asks “ after the passage of the body, what is the form 
assumed by this infinite plane ? ”. The answer is that the part near where the 
body has been has drifted forwards, and that the fluid between the initial and 
final positions of the material surface has a mass equal to the ‘hydro- 
dynamic ’ or ‘ virtual ’ mass associated with the body’s motion. 

It could, perhaps, have been expected that the hydrodynamic mass would 
equal the net.‘mass movement’ (integral of momentum with respect to 
time) induced in the fluid per unit distance travelled by the body, so that the 
total mass movement per unit distance equals the mass of the body plus 
the hydrodynamic mass. However, the study of hydrodynamic mass from 
an Eulerian point of view had left this interpretation hidden until Darwin 
discovered it. 

It should be emphasized that no abandonment of the Eulerian steady 
velocity field is involved in the studies here described, nor is’there any 
question of using the Lagrangian equations of motion. Rather it is neces- 
sary to determine, not only the streamlines, but also on each streamline 
the time at which a fluid particle reaches any given point, measured from 
some fixed time for the particle-say, from when it passes across a particular 
plane at right angles to the undisturbed stream (as in Darwin 1953), or (as 
in the present paper) from when it would have passed across a particular 
plane had the stream remained undisturbed. Thus, if the latter plane is 
x = 0, then we require the solution of 
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(where v ,  is the x-component of velocity, etc., and the undisturbed stream 
has v ,  = U, vg = v, = 0). The advantage of this definition over Darwin’s 
is that, far upstream, material planes at right angles to the stream are planes 
t = constant ; hence the surfaces into which these are deformed, in which we 
are particularly interested, are all given by t = constant. 

I t  is easy, in terms of this ‘ drift function’ t ,  to determine how vortex 
lines, initially at right angles to the stream, are deformed and stretched by 
the irrotational flow about the body (here, the vortex lines are supposed 
weak enough for the additional stretching by the secondary flow due to 
their presence to be neglected). A vortex element joining a pair of points 
Qn two neighbouring streamlines will always join points on these two stream- 
lines, and they will always be points with the same value of t .  The vector 
separation of these two points, divided by the scalar separation of the 
original pair, gives the direction and magnitude of the vorticity divided by 
its upstream magnitude. The details come out simply once the drift 
function t is known. 

The work is carried out in detail for a sphere, as being the three- 
dimensional shape for which (owing to the simplicity of the image system) 
the secondary flow has the best chance of being calculated. This secondary 
flow will be studied in detail in a later paper. Here, only its behaviour at 
large distances from the sphere is worked out, since this deduction does not 
depend on the details of the image system, but conversely leans heavily on 
Sir Charles Darwin’s result concerning hydrodynamic mass. In  fact, it is 
shown ( $ 3 )  that, for any finite body so placed that the irrotational flow 
exerts no yawing moment on it, the part of the secondary velocity field which 
falls off like the inverse square of distance from the body has a simple form 
depending only on the hydrodynamic mass associated with the body’s 
motion and on the mass of fluid displaced by the body. 

Finally, it is pointed out that this secondary velocity field induces what 
might be called a ‘ tertiary ’ velocity field, which falls off like the inverse 
first power of the distance, and so on; the complete series for the remote 
influence of the obstacle is non-uniformly convergent, and the true behaviour 
which it represents is probably of a damped-wave type. The remote in- 
fluence on a weakly-sheared oncoming flow of ‘ half-body ’ shapes like the 
Rankine source body is also discussed. 

The method of this paper for calculating vorticity fields is an alternative 
to that developed by Hawthorne (1951, 1954) and Hawthorne & Martin 
(1955). Their integral for the streamwise component of vorticity is con- 
venient for numerical computation but was found unsuitable for analytical 
estimation near singularities and at infinity. The present method is parti- 
cularly suitable for this purpose, and gives all components of the vorticity 
with equal ease. Detailed comparison between the results of the two 
methods for the sphere is given in $7. This has been made possible by 
Professor Hawthorne’s kindness in putting at the author’s disposal data 
additional to those in the papers cited. 

One advantage of the present expressions for the secondary vorticity 
over those of Hawthorne (1954) accrues almost by chance. The form of 

F.M. C 
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these expressions, in the case of flow past an infinite cylinder, with the 
upstream velocity normal to its axis and increasing linearly with distance 
along the axis, is such that one can write down at once, by inspection, the 
secondary velocity field which the vorticity induces. This is done in $4, 
and figure 1 shows the computed secondary flow for the case of a circular 
cylinder. This derivation of the secondary flow past cylinders appears 
somewhat as a sideline in this paper, but it may prove the most useful of the 
results which are obtained. 

2. THE VORTICITY FIELD IN WEAKLY-SHEARED FLOW PAST AN OBSTACLE 

Consider flow past an obstacle in which the velocity field far upstream 
is a parallel flow 

Suppose that the obstacle is near the axis y = z = 0, and that V(y,  x )  varies 
only a little from its value V(0,O) = U over a range of variation of y and z 
large compared with the size of the obstacle, A particularly interesting 
case is that in which the gradient of V also varies little over this range, so that 
with suitable choice of axes we can take 

v a =  V ( y , z ) ,  vuy=z)z=o. (2) 

va= U+Ay,  vy=z),=0 (3 ) 
far upstream, for some rate of shear A. 

I n  all cases, the irrotatonal flow about the obstacle with uniform up- 
stream velocity U will be called the primary flow. The vortex lines, which 
far upstream lie in planes x = constant, are deformed by the primary flow into 
shapes which will be calculated, after which ($3) the resulting secondary 
vorticity field and the asymptotic form of the associated secondary velocity 
field far from the obstacle will be deduced. The work is displayed only 
for the simple case (3), but results for the more general case (2) are quoted 
at the end of $3. 

Let the streamlines of the primary flow be represented by equations of 
the form 

Y =y(x,yo, z o ) ,  x = Z ( X , Y O ,  X o ) ,  (4) 
where yo= lim ( y ) ,  zo= lim (z). ( 5 )  

z+- m s+- co 

Thus expressions (4) are solutions of equations (1) for y and z, and can be 
supposed obtained by the ordinary methods of hydrodynamics. Then the 
solution for the additional variable t is 

1 - u}dx, 1 
t=t(x,y0,xo)= - + u I”{ -co ~ x ( w J o , z o )  

where v,(x, yo, zo) signifies the value of the velocity component v ,  at the point 
x on the streamline given by (4). 

In case (3) the upstream vorticity field is given by 

wX=wy=O,  o+= -A ,  (7) 
so that the vortex lines are parallel to the x-axis. An element of vortex line 
stretching from (X,  yo, zo) to (X,  yo, zo +axo), where X is large and negative, 
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is deformed by the primary flow, but always remains on a surface t = constant 
and joins points on the streamlines specified by yo, zo and yo, zo+Szo. 
When its length is BY,  the vorticity is changed from its initial value - A  
to - ABr/Sz,, and its direction lies along the new position of the element. 
Its components are therefore 

where the suffixes indicate the variables to be kept constant in each 
differential coefficient. 

so that 

which, with a similar result for axlax,,, gives by (8) 

Far downstream of the obstacle, we have 
x 1  
U vz+ u, VY ---f 0, 21, + 0 ,  t -  - - + ,X(y,z), (13) 

where X ( y ,  z )  is Darwin's 'total drift,' the ultimate displacement of a 
particle of fluid (relative to particles in its plane which are far from the path 
of the obstacle). We shall need Darwin's result 

W 

f m  1 X ( y ,  x) dydx= V,, 
J - a  J -a 

where V h  is the volume of fluid whose mass is the ' hydrodynamic mass ' 
associated with the body's motion. 

In  the limiting conditions (13), the vorticity components (12) satisfy 

(15) 
ax 
a2 

W.--fA- ,  W Y + 0 ,  W , + - A ,  

so that the only new component far downstream is w,, which Hawthorne 
calls the ' secondary trailing vorticity '. 

If the primary flow has a velocity potential U(x++), so that + is the 
' disturbance potential ', there is a useful approximation to the solutions (4) 
and (6) of equations (l) ,  which is valid on any streamline that remains fai- 
from the obstacle (so that (vz- U)/U=a+/ax<l all along it). Such a 
streamline takes the form y = yo, x = x, to a first approximation, and to a 
second approximation 

c 2  
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while equation (6 )  becomes 

Note that the integrals in (16) and (17) need not be taken along the stream- 
lines ; to the approximation involved, y and x may be taken constant therein, 
and equal either toy, andz, or to their values at the point under consideration. 

Substituting from (16) and (17) in (12), we obtain to the same approxi- 
mation 

Equations (18) are valid far from the body, except downstream of it on 
streamlines which have not remained far from the body. On these, in fact, 
(15) holds. 

3. THE SECONDARY FLOW IN WEAKLY-SHEARED FLOW PAST AN OBSTACLE 

The secondary flow associated with the secondary vorticity field is 

(i) a part, which is the gradient of a potential +1 vanishing at infinity, 
and whose normal velocity component on the body surface cancels 
that due to the shear flow v = Ay, v y  = vz = 0 which results from the 
undisturbed vorticity distribution (0, 0, -A)  ; 

(ii) the Biot-Savart velocity field, say vl, of the vorticity change 
wl=(wz, my, m z + A ) ;  note that the Biot-Savart integral would not 
converge if the undisturbed vorticity field were not subtracted out ; 

(iii) a further irrotational part, which is the gradient of a potential +2 

vanishing at infinity, and whose normal velocity component on the 
body surface cancels that due to (ii); this may be regarded as the 
velocity field of the image vorticity associated with wl, while part (i) 
is that of the image vorticity associated with the undisturbed vorticity 
field. 

Now, by general properties of harmonic functions, the irrotational 
velocity fields (i) and (iii) fall off 1ike.the inverse cube of the distance from 
the body, because the required normal velocity on the surface has a zero 
integral over the surface in each case (so that in ‘ Green’s equivalent layer ’ 
the total source strength is zero). However, the Biot-Savart field (ii) falls 
off more slowly, and its asymptotic form will now be derived. 

First, we see by inspection that a velocity field corresponding to the 
asymptotic form (18) of the vorticity change w1 is 

calculated in three parts : 

v $ =  - A  %dx, vy=A+,  ziz=O. 
- m a y  

(Its curl is (18), and its divergence vanishes). Since the disturbance poten- 
tial 4 for flow past any finite body is asymptotically that of a doublet, this 
velocity field (19) falls off like the inverse square of the distance from the body, 
more slowly than that of (i) and (iii) above. 
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Next, if w2 is the difference of the vorticitychange w1 from its asymptotic 
form (18), and v2 is its associated (Biot-Savart) velocity field, v2 can be 
expressed asymptotically as the velocity field of a single vortex element of 
strength equal to the total strength of the field w2, thus 

where r =  \/(xZ+y2+~2) and the integral is over the whole region occupied 
by the fluid. This step is permissible only after the inverse-cube part of w1 
has been subtracted out, as the integral would otherwise be only semi- 
convergent.* 

Now If the 
integral is taken over a large rectangular box, we have 

w2 dr does not vanish, because of the trailing vorticity. J 

= I (x, y, z)w,-n dS 
J s  

.= (0, 0, - A  V J ,  (21) 
where (15) and Darwin’s result (14) have been used. Note that only the 
rear face of the box contributes to j, because the part of w1 which falls off 
like l/r3 has been taken out. By (20) and (Zl), 

v 2 - -  AVh( - 2  y3’ x r3’  0 )  as r -+  co. 4n 
Now, for a body so placed that the irrotational flow exerts no yawing 

moment on it, the asymptotic behaviour of the disturbance potential (Taylor 
1928) is 

where V ,  is the volume of the body. 
the results (19) and (22), we obtain 

Hence, for such a body, combining 

More generally, 4 contains terms iny/r3 and z/r3 proportional to the moments 
on the body, about the z-axis and y-axis respectively, and these make an 
additional contribution, through (19), to (24). It may be noted, however, 
that they do not affect the value of vly on y = x = 0, which alone influences the 
first-order displacement of the stagnation streamline. 

* As a matter of interest, if this argument is incorrectly applied to the inverse- 
cube part of o , it gives an asymptotic contribution to the velocity field from this 
part only two-thirds as much as the true contribution (19). 
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It has been seen that a primary flow with the disturbance velocities 
falling off like r3 produces secondary flow velocities falling off like r2. It  
may be questioned whether this conclusion does not undermine itself, since 
the assumption that the disturbance velocities are asymptotically given by a 
potential (23) is used to derive (24). However, the process by which (24) was 
derived from (23) was a linear one, so that the existence of a further con- 
tribution (24) to the disturbance velocities at infinity merely makes an 
additional (call it ‘tertiary’) contribution to the vorticity field and the 
resulting velocity field. Calculations (along lines similar to those above) 
show that the asymptotic form of the tertiary velocity field is of order Y - ~ ,  

being in fact 
A2( V ,  + 2 V,)(x2 + y2) 

‘1% = 
87r Ur3 7 

at all points far from the body except those immediately downstream of it. 
It is obvious that the series for the disturbance velocity whose first 

three terms are given by the primary flow UV+, the secondary flow (24) and 
the tertiary flow (25), is of little value at distances from the body comparable 
with U/A. I n  this region, where the disturbances are very small, a truer 
picture may be obtained by solutions of the linearized form 

U- a curlv= -A-  aV 
ax ax 

of Helmholtz’s equation for the vorticity. 
zero at large distances are usually wavy, for example 

where a, b, c are numbers satisfying c2 = a2(a2 + b2 + c2). Evidently (27) 
expanded in powers of A/ U would give a series of the kind described above, 
but its convergence would be non-uniform for Y large, and the true order of 
magnitude of the whole is no ,greater than that of the first term. 

The above gives a mathematical reason for not feeling alarmed at the 
orders of magnitude found. Physically, one would not expect the approxi- 
mation to be good at distances from the body comparable with that at which 
the oncoming flow differs from the primary flow by an amount equal to itself. 

We consider next how the results are to be modified if a body experiences 
drag, so that the irrotational flow outside the wake has a source-like behaviour 
at infinity (corresponding to the reduced mass flow in the wake). The 
same problem arises for ‘ half-bodies ’ extending to infinity downstream- 
such as pitot tubes-which exhibit the same source-flow behaviour. In  
either case the disturbance potential satisfies 

Solutions of (26) which tend to 

v - ~ ~ ~ - ~ e x p [ i ( a x + b y + c z ) A / U ] ,  (27) 

m 
4TY 

$ - - -  a s r - t  co, 

where, for a finite body with a wake, m is the drag divided by p U2, while, for 
irrotational flow about a half-body, m is the cross-sectional area of the 
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semi-infinite cylindrical portion. By (19), the secondary flow then is 
asymptotically 

(29) 
iz mx d m 

2JZ = 0, 2) = - -  
lJ 4nr' 

2, = -  

far from the body except immediately downstream of it. The contribution 
of the Iliot-Savart field of o2 falls off like r2 and so does not have to be 
included in (29). As with (24), (29) is probably only a term in a series 
whose early terms are a poor approximation for values of Y comparable with 
UIA. 

Finally, we give without proof some results for the general case of a 
parallel flow given by equations (2) far upstream. The secondary vorti- 
city field is a( vo, t )  ( J ) = v - - -  a(vo7 t )  a ( v " , Y )  w x = 2 , ,  ___ 

a(YW Zo) ' a 21 a(Y", z o )  a(Y0, xo) ' 

where V,, stands for V(yo,zo) and the notation for Jacobians has been used. 
The secondary trailing vorticity is 

The asymptotic form of the vorticity change ol, as r+ co except immediately 
behind the body (corresponding to (18), is 

av 
az 

wz, my- -, w,+ - 

The asymptotic velocity field v1 corresponding to (32) is less simple than 
one would like, because the expression analogous to (19), namely 

although it has a curl equal to (32), is not solenoidal unless 
a2V/ayz +a2Vpz2= 0. In general, then, v1 is asymptotically (33) minus 
grad $) where V2$ = q5VaV. 

As in the special case, the secondary flow is asymptotically v1 + v2, where 
v2 is the velocity field of a single vortex element of strength equal to the total 
strength of the field 02. We can show that 
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where each integral can be interpreted as the product of VJz (see (14)) and 
a mean shear over a region comparable with the body size. 

4. THEORY FOR TWO-DIMENSIONAL PRIMARY FLOWS 

The theory for a uniformly sheared oncoming flow (3) will now be 
specialized further to the case of a two-dimensional primary flow in the 
(x,x)-plane about a cylinder with generators in the y-direction. (Note that 
the assumed oncoming vorticity (7) is entirely in the x-direction, but that 
the theory can be trivially extended to cases where there is in addition some 
uniform oncoming vorticity in the y-direction, since vortex elements in that 
direction are not stretched at all by the primary flow.) The case in questiob 
is remarkable in that the exact secondary flow can be calculated. 

The streamlines of the primary flow may be written 

y=yo; x = z ( x , z o ) ,  ( 3 5 )  
and the time t (see (6)) is a function of x and x, alone, giving, by (12), vorti- 
city components in the form 

Some simplification is possible for these flows, however, if the time t, once 
calculated, is expressed as a function of x and z ,  rather than of x and zo. 
Since Ux,, by (5), is the stream function of the two-dimensional flow, 

Using these results to transform (36) for the case when t is expressed as 
t(x, x), we obtain 

Thus the vorticity is simply proportional to grad t in magnitude, but 
is perpendicular to it in direction (as it must be because t=constant along 
vortex lines). This result could also have been obtained by physical argu- 
ment : the rate of stretching of the vortex elements on which t = constant 
must be inversely proportional to the distance between successive lines 
t = constant by conservation of mass. 

The exact secondary flow can be deduced from (38) by inspection, in 
three parts (i), (ii) and (iii) as in Q 3. The potential dl whose gradient cancels 
out the normal component of the shear flow (Ay, 0, 0) on the body is 

where d(x,x) is the 'disturbance potential' as in $5 2 and 3. 
Savart field of the vorticity change 

94 =AYh (39) 
The Biot- 

ax 
ol= (AUz,O, at. A - A U -  

ax = 0, a, =A(. - Ut), D, = 0, is 
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because the curl of (41) is (40) and its divergence vanishes. Finally, no 
extra irrotational portion (iii) is needed because the velocity field (41) is 
wholly tangential to the body. 

Combining the secondary flows (39) and (41) with the primary flow and 
the oncoming shear flow, we see that the velocity components in any plane 
y = constant are simply 

(42) 
a+ 

v z  = ( U +  Ay) (1 + g) , vz = (U+ Ay) - az ' 

namely, the ordinary potential flow with the upstream velocity appropriate 
to that plane. Superimposed on these motions, however, is a flow parallel 
to the generators given by 

TI,, =A(" + + - Ut) .  (43) 

\ I I . 
I I 

\ I / 
' -0.1 10.0 I 
\ I 

/- . . q0.4 . \ I I 

I 

/ /' \+L' 

Figure 1. Primary and secondary flow about a circular cylinder of radius a ,  with 
axis the y-axis, when the upstream velocity is (U+Ay, 0, 0). 
Streamlines of the primary flow (note that the velocity components in the x and 
z directions follow these streamlines even when the secondary flow is included). 

_ _ _ _ _  Contours of constant vJAa  (note that the negative values, which predominate, 
denote secondary flow in the direction of decreasing primary flow velocity). 
(Flow is from left to right and only the upper half is shown.) 

As an example, figure 1 shows the distribution of v,/Aa for sheared flow 
about a circular cylinder of radius a, computed from Sir Charles Darwin's 
evaluation of t for a circular cylinder. Remembering that the y-axis is 
along the axis of the cylinder in the direction of increasing velocity, we see 
that the greatest secondary flow velocities are in the direction of decreasing 
velocity-physically, because this is the direction of decreasing stagnation- 
point pressure. Like t itself, the secondary flow velocity has theoretically 
a logarithmic infinity on the surface of the body (and on the central stream- 
line behind the body) ; but viscous resistance must place a practical limit 
on the velocities which can be achieved. 
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5. THEORY FOR AXISYMMETRICAL PRIMARY FLOWS 

Some simplifications, analogous to those of $4, are possible when the 
primary flow is axisymmetric, though unfortunately they do not extend so 
far as a simple exact solution for the secondary flow. 

If x, p, h are cylindrical polar coordinates relative to the axis of symmetry, 
the streamlines of the primary flow may be written 

p =p(x ,  Po), h = constant. (44) 
In  ordinary hydrodynamics such streamlines are obtained in the form 
4=constant, where 4 is Stokes’s stream function: note that the relation 
between t/i and po=lim ( p )  is 

x-t m * = + upo2. (45) 

(46) 

is independent of A. 
If p and h are related to the coordinates x, y and z used in earlier sections 

by the equations y=pcos A, z=psinh, then the upstream flaw (3) and its 
associated vorticity field may be written 

v,= U+Apcosh, V ~ = Z ~ ~ = O ,  wZ=O,  wp= -AsinX, wl= -AcosX. (47) 

The component wA, the ‘ring vorticity’, varies in a particularly simple 
manner due to the stretching of vortex elements by the primary flow. An 
element of ring vorticity subtends always the same angle 6h at the axis, and 
so its length varies in direct proportion to the radius p. At any point, 
therefore, 

where (45) has been used to throw the result into an alternative form in- 
volving Stokes’s stream function. 

The radial and axial components of vorticity, wT and wx, are stretched 
in a manner depending more closely on the details of the flow in planes 
A=constant, and arguments precisely similar to those leading to (12) give 
for these components the results 

Accordingly, the secondary trailing vorticity is 
lim (wX)=(AsinA)X(p). 

z++ 00 

Since, as (46) shows, t is necessarily calculated in the first place as a 
function t ( x ,  po), the formulas (49) in terms of that function will be found 
most convenient for practical application in $7. It is interesting and 
instructive, however, by analogy with $4, to see what they become in terms 
of a t which, once calculated, is expressed as a function of x and p, rather 
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than of x and po. 
in terms of Stokes’s stream function, 

From (45) and the expressions for the velocity components 

Using these results to transform (49) for the case when t is expressed as a 
function t(x,p), we obtain 

I , I  

w,=(Asinh)U- Po - ,  at wp= -(Asinh)U- Po - at 
P aP p ax ’  

Thus the vorticity resultant in each meridian plane, while perpendicular 
t o  grad t as in 94, is proportional in magnitude to (po/p) grad t. This, like 
the corresponding two-dimensional result, can alternatively be derived 
from conservation of mass. The mass of fluid in an annular region bounded 
by two neighbouring axisymmetrical streamtubes and by two neighbouring 
surfaces t=constant is proportional to the product of the radius p, the 
distance between the two surfaces t = constant, and the length of an element 
in which the part of a surface t=constant between the two streamtubes is 
cut by a meridian plane. For this product to remain constant along a stream- 
line, the length of such an element must vary as (grad t)/p, whence the 
required result follows. 

The author could not obtain by inspection the velocity field corres- 
ponding to the values of wl, w ,  and wp given by (48) and (52) ; a field whose 
curl is as required is fairly easily found, but it is not solenoidal, nor does it 
satisfy the boundary conditions ! Therefore, the direct use of the Biot- 
Savart formula for calculating the secondary velocity field seems to be 
necessary. 

Finally, it may be noted that in some problems it is convenient to use the 
spherical polar coordinates r,  0, where 

instead of x and p. The ‘ longitude ’ h is retained. By considering the 
stretching. of a vortex element joining streamlines specified by (po, A) and 
(po +Spa, A) we obtain (exactly as (8) was obtained) the equations 

r cos 0 = x, Y sine =p,  (53) 

where equation (47) for the initial vorticity of the element has been used. 
If the time is expressed as t(po, r ) ,  then 

as in (10) and (ll), giving 

(56) 
at wr=(AsinA)ar-, o,=(Asinh) 

aP0 

where r ,  X are kept constant in the differentiations. 
time is expressed as t (po,B), then 

If, alternatively, the 

at;aPo - at (2) =(”) +5J.”) ,(57) 
( r g ) t , L  = - -0 - -%-’ aP0 a ~ o  t , a  a ~ o  e,a aPu t,a 
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where 8, X are kept constant in the differentiations. If, lastly, the time is 
expressed as t(r,e), then the sentence following equation (52) makes it clear 

6. EVALUATION OF t FOR FLOW PAST A SPHERE 

The drift function t will now be studied in detail for flow past a sphere, 
principally so that the results can be substituted in the formulas of 852,s 
and 5, and the secondary flow evaluated. 

From Stokes’s stream 
function for flow past a sphere, and equation (45), the streamlines are given 

Spherical polar coordinates Y, 8, X are used. 

where a is the radius of the sphere. 
obtaining the time t are useful in different regions, namely 

Two alternative equations for 

. dr dr 

(62) 
rd8 rde dt= - = - 

t ’ B  

and 

On any given streamline, by ( l ) ,  

since x+r --f 0. The integral for t derivable from (60), (61) and (63) is 
unfortunately hyperelliptic, as Darwin (1953) points out. However, 
valuable expansions of it can be obtained both for large and small values of Po/a- 

For large po/a, the solution for r of equation (60) can be expanded in 
powers of a3/p: as 

t + r / U - + O  a s 8 - n )  (63 ) 

(64)) 
3 aG - -sinG8+. . . 

sin 8 8 P: 
It  follows that (62) can be expanded as 
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Integrating, 

sin40 do- sin70 dO+ - iii - p";: 19 sinloo d0 - . . . , 

where the integrals have been made definite in such a way that (63) is satisfied. 
The radius of convergence of the series (65) is easily determined from the 

position of the singularities of r/ (  1 + a3/2r3) as a function of po cosec 0. 
The series converges for po >31122-l/3a sin 0. Hence (66) converges for all 
0 provided that po/a >31/22-1/3 = 1.375". 

(66) 

Darwin's drift distance is inferred from (66) as 
3 as 3T 315 a12 ("">- 

X(po) lim ( U t - x ) =  - - 5 ( T )  -$(g) + 128 pol1 256 ' *  * 

- x i +  m 8 Po 
ae a9 U12 

= 0.442 7 - 0.914 -8 + 1.903 T1 - . . . , 
Po Po Po 

(67) 

the fractions in brackets being the values of the integrals in (66) for O = O .  
Note that (66) has the properties (obviously true on any streamline 

from the symmetry of the flow) 1 (68) 
t(0) - t(*T) = t(&T) - t(T - O ) ,  

X(po) = lim( Ut - X) = 2( Ut)0=n/2 - lim( Ut - X) = 2( Ut),3=n/2 . 
e+o 8 - t ~  

For small po/a, each streamline (60) is divided into two parts, one on 
which 8 is near 0 or T (that is, sin 0 is small) and one on which ( r  - u)/u is 
small. When 0 is near T, we use the approximation 

-secO = ,1+&sin20 (69) 
in (61), together with (60) and (63), to obtain 

We suppose that this approximation is valid down to Y = yo (say), after which 
6 departs too greatly from T but (Y - a) / .  is small. For r<ro, we use (62) 
with the approximation 

Y 2 4  2 4 Po2 -- ' - a +  - ( ~ - - a ) +  - a +  - - cosec20 . a 3 ' 3  3 3 9 a  

* Some improvement in convergence arises if the series (66) is rearranged as a 
series in powers of a/r (with coefficients functions of O),  using (64). This has not 
been done, however, because of the desirability of knowing t as a function of po for 
the application of the results of 55.  The results it gives for X(p)  are identical with 
those obtained by the method used below. 
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(in which the error is of the order pb) to obtain 
2P: log cot48 + - cot 8 cosec 8. 
9a (72) 

where the arbitrary constant is determined by putting 8 = &-I and using (68). 
Comparing (70) and (72) for values of r and 8 for which both approximations 
are valid (and also (60) holds), we obtain after some calculation 

As Darwin points out, X(po) is logarithmically infinite at po=O. This is 
because there is an infinite time-delay as fluid approaches any stagnation 
point where the tangent to the body surface is smoothly-turning. 

In figure 2, the function pX(p)/a2 is plotted against p/a,  the expression 
(73) being used for p / a  6 0.4, and expression (67) for p/b 2 1.5 (some allow- 
ance for the later terms in the series being made up in this case by assuming 
that the coefficients remain in approximate geometrical progression). To 
interpolate between them we use Darwin’s result (14) to give 

since the hydrodynamic mass of a sphere is half the displaced mass of fluid. 
Practically no choice is possible if a smooth interpolation between the two 
crosses in figure 2 is to be made which satisfies (74)’ and a ‘ French curve ’ 
has been selected and used for this purpose which makes the integral from 
0.4 to 1-5 (calculated by Simpson’s rule) make up exactly for the amount by 
which the sum of the (analytically evaluated) integrals from 0 to 0.4 and 1.5 to 
co falls short of -$. The values of X(p)/a itself as a function of p /a  have been 
read off figure 2 and are presented in figure 3 and table 1 .  

Once X(p)  has been obtained, it is a simple matter to compute the function 
t throughout the field. For 8>$n-, (69) is a good approximation, and 
accordingly the formula (70) has been used for t .  For &-<8<#.rr, two 
formulas have been used : when ria < 1.5, (71) is a good approximation, and 

Figure 2. The method of interpolation used to derive Darwin’s ‘ total drift’ 
function X(p) for irrotational flow past a sphere. 
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0.15 0.2 
1.980 1.616 

0.7 0.8 
0.327 0.252 

1-57 1-75 
0.036 0.020 

--- 

--- 

Drift 

0.25 
1.340 

0.9 
2.194 

2.0 
0.011 

Figure 3. Darwin’s ‘ total drift ’ function X(p) for irrotational flow past a sphere. 
Since the scales used for p and X ( f )  are the same, the figure gives the actual 
shape into which planes of fluid, initially at right angles to the stream, would 
ultimately be distorted in such a flow. 

0.05 
3.418 

0.5 
0.576 

1-3  
0.065 

0.1 
2504  

0.6 
0.430 

1.4 
0.048 

-- 

-- 

0.3 
1.124 

1.0 
0.150 

2.25 
0.007 

0.35 
0.947 

1.1 
0.115 

2.5 
0.004 

-- 

~- 

0 4 
0.799 

1.2 
0.087 

Table 1. 
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so formula (72) has been used for t, while when r,/a>1.75, we have 
po cosec 0 > 1.58 a, which is well inside the radius of convergence of (65), so 
that (66) has been used. The interpolation across the small gap is straight- 
forward. For 8<&-, equation (68) has been used to deduce t from its 
values when 8 >$n. The results are exhibited in figure 4, where the surfaces 
t =  constant are shown for values of Utla proceeding by intervals of 0.5 
from -2.5 to + 3. The streamlines po/a=O-125, 0.25, 0.375,0.5,0-75,1.0, 
1-5 and 2.5 are also shown. 

! 
Figure 4. The irrotational flow past a sphere : streamlines and surfaces i=constant. 

The latter are the shapes into which planes of fluid initially at right angles to 
the stream would be distorted as they passed over the sphere (if the flow 
were irrotational). 

Figure 4 has two uses. First, it exhibits a steady fluid motion in far 
more detail than has ever been given before, showing precisely what happens 
to  every particle of fluid and when (Darwin’s figure 1, representing flow past 
a circular cylinder, is insufficiently detailed for this purpose.) Secondly, 
in the problem of shear flow past a sphere, it exhibits precisely how vortex 
elements initially in the p-direction are stretched and change their direction 
during passage of the sphere. An impression of the values of the vorticity 
resultant in a meridian plane can be derived either by observing this 
stretching, or by means of the rule derived in $ 5  that along any streamline 
the product of this vorticity with the distance from the axis varies inversely 
as the distance between successive surfaces t = constant. Numerical 
values of the vorticity components are obtained in 8 7 .  
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An alternative mode of display of the function t is adopted in figure 5, 
which shows the variation of Utja along all but one of the streamlines in 
figure 4, by plotting Utja as a function of x = Y cos 6' for each value of po/a. 
A third manner of representation of some of the results (figure 6) will be 
discussed in § 7. 

0.115 

0.25 
0.315 
0-5 
0-7s 

- r/a 
I I 

0 I 2 3 -2 -I 

Figure 5 .  Variation of the drift function t ,  for flow past a sphere of radius a, along 
different streamlines, which are identified on the figure by the values of po/a 
noted on each curve. Here, p o  is the distance of a streamline from the axis 
far upstream. 

7. THE VORTICITY FIELD IN WEAKLY-SHEARED FLOW PAST A SPHERE 

The drift function t having been evaluated for irrotational flow past a 
sphere, equations (56) and (58) show that only its derivative with respect to 
p o  (keeping either Y or 6' constant) is needed to deduce both w r  and w, in the 
problem of weakly-sheared flow past a sphere. 

In the region 6'>&r, where t has been expressed as a function of po and 
Y as in (70), equations (56) are applicable; in applying them, we note that 

(75) 
Y tan 6' 

by (60) 
Y ( E )  =-* 

T Po 
In the region &r<9<&r, where t has been expressed as two different 
functions of p o  and 6' in different ranges of po, the detailed computations of t 
were done for 6' = 90"(10")150", with a suitable selection of values of po in 
each case ; a small gap is present (1.5 <r/a < 1.75) where neither formula is 
reliable. However, as figure 6 shows, a smooth curve can easily be drawn 
through the points which are available for each 8. 
can be inferred by measuring the slope of the curve ; for the larger and smaller 
values of po/a, however, analytical differentiation is preferable. The 
resulting tables of values can then be improved by the technique of 

From these 

F.M. D 



50 M .  J. Lighthill 

-I - 

-2 - 

-3 - 

\ 

Figure 6 .  Variation of the drift function t with po for constant values of the spherical 
polar coordinate 8. 
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When this has been done, w, and we ‘ graduation ’, or smoothing of data. 
are inferred from (58), in which, by (60), 

0.25 
1.214 

0.9 
0.450 

-- 

The same technique applied to thevalues of X(p) itself gives theimportant 
function X ( p ) ,  which by (50) determines the secondary trailing vorticity 
distribution. Since X ( p )  + 00 as p + 0, it is convenient to exhibit the 
product - p X ( p )  in Table 2. Certain of the values can be compared with 

0.3 
1.166 

1-0 
0.394 

!--z-p -pX’ (p, /a  1.333 

p/a 
- pX’(p) /a  

Pla 
-pX ’ (p ) /a  

0.4 
1 ‘043 

1 a2 
0.298 

0.05 
1.325 

0.5 
0.897 

1 *3  
0.249 

1.307 1.283 

0,749 0.621 
-- 

0.198 0.151 

Table 2. 

- 
0.2 
1.253 

0.8 
0.523 

0.35 
1.112 

1 a 1  
0.345 ---- 

1.75 1 2.0 12.25 1 2.5 I 
0.079 0.049 0.030 0.019 

results for the secondary trailing vorticity given by Hawthorne & Martin 
(1955), who obtain values of ( ~ J ~ = + ~ / A s i n h  equal to 12.976, 4.792, 1.852 
and 0.404 for po/a=O-l, 0.25, 0.5 and 1.0 respectively. These values, 
obtained by numerical integration along streamlines, differ from those to be 
obtained from Table 2 (by dividing by p/a) by - 0.09, - 0.06, + 0.06 and 
+ 0.01 respectively. Errors in both methods probably contribute about 
equally to these discrepancies, although in the case p/a = 0.1 the value in 
Table 2, based on expression (73) for small p/a,  can perhaps be preferred*. 

The general distribution of vorticity is shown in Table 3, where the 
variation of wlr and along three particular streamlines po/a = a, 3 and 1 is 
exhibited by giving their values at 10” intervals of the polar angle 0. These 
streamlines were selected partly because they give a good general idea of the 
variation of wlr and over the field of flow, and partly because they give a 
convenient basis (as will be seen in a later paper) for the evaluation of the 
Biot-Savart field of ol, by integration first with respect to A, secondly with 
respect to t) along a streamline po =constant, and finally with respect to po. 
The vorticity change o1 is tabulated as being the quantity directly respon- 
sible for the secondary flow. The absolute vorticity components w,  and we 
can, however, be obtained by adding to wlr and wlB the values of the undis- 
turbed vorticity components (w,  = - A sin h sin 0, we = - A sin h cos 0) which 
are tabulated on the left. 

Professor Hawthorne has kindly supplied the author with the results of 
computations, additional to those given in Hawthorne & Martin (1955), 
from which values of wlr and Comparisons with the 
values to Table 3 at a sample of points show agreement to within the same 
order of accuracy as was noted above for the secondary trailing vorticity. 

* -pX’ (p) /a  is given as a series of powers of ( ~ / a ) ~  of which the first two terms 
for p/u=O.l are 1.333-0.026 ; the next would be expected to be less than 0.001. 

D 2  

can ‘be deduced. 
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For values of po/a which are either Iarge or small, the direct use of 
equations (56) and (58), with the approximation (66) or (70) or (72) for t, is 
recommended in preference to the numerical procedures described above. 
Here, to save space, we give only the Jirst approximation to wlr and 0 1 8  in 
each case. For large ria, except immediately downstream of the sphere, 

wlr - AsinXsin8 , wl0 - -+AsinXcosO 

For 0 near T ,  

wl0 - A sinXcos 8 { 1 - (1 - %>-'"}. 
For B near 0, we must add on to the values (78) the considerably larger 

values 

wlr - A sin x cos e (I - $ ) X ( p o ) ,  1 
(79) 

wie - - 
For small (Y - a)/a, 

olr - A sin x sin B, w10 - A sin A (I - $)-'". (80) 

Finally, we note the simple exact form of the third component uA of the 
secondary vorticity, which by (48) and (60) is 

w A  = - A cos X (1 - $)-"' , W~A=ACOSA 

It is interesting that this component shows no dependence on 8. 
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